FeverIQ: A global deployment of secure multiparty computation

One of the things we take for granted is that healthcare involves the exchange of unsecured information between two people. After all, how could a doctor possibly help you to stay healthy, without knowing anything about you? However, that traditional view of healthcare is no longer inevitable – it’s all changing, and it’s changing quickly.

There are two major intersecting trends. First, computers double their compute performance every year or two and are beginning to rival and exceed human performance in multiple clinical specialties, such as radiology and dermatology. This allows us to broaden our views of who, or what, doctors are. Second, it’s possible to compute on encrypted data, such that only the person who generated the data can see the computation results.

When you combine those two things – powerful classifiers and ability to compute on encrypted data – you end up with something new. You can begin to imagine a world where healthcare is both affordable, costing fractions of a penny per diagnosis, and completely private. In the last few months, we’ve built the world’s largest deployment of Secure Health, in which computers work on encrypted data to give people useful insights, in this case, a personalized COVID risk estimate.

We’ve also decided to make the data we obtained from millions of people around the world available to scientists and doctors, as a starting point to further discovery and impact.

The preprint is out:

This is only possible because millions of people in 91 countries thought that this was a good idea, and took a leap of faith to share their symptoms and test results with the FeverIQ efforts, which uses Enya’s secure multiparty computation API to classify and learn without their data ever leaving their phone. Thank you, to each one of you.


CancerBase – first lessons has been up and running for a few months now. About 1000 people have signed up and many of them suggested at least one new feature. We are preparing to launch CancerBase 2.0 this winter, based on everything we have learned so far. Here’s just one example – dozens of people complained (nicely) that we downsampled their physical location on the map. We did this to ensure anonymity, which makes complete sense if you are approaching medical data as a scientist or a lawyer. However, some patients have a different perspective. Their point is that they are a real person with a real name and a real location, and they want everyone to know about them and their disease, and they want their dot on the CancerBase map to be right on their house. We added a checkbox to CancerBase so that everyone can now specify their personal mapping/geolocation preferences; since medical and other personal data belong to the patient, of course they should have complete control over how the data are used and displayed. It’s been amazing to work with everyone on CancerBase and we are growing quickly. Stay tuned for CancerBase 2.0, which will feature a common API and support several patient-centered applications.


Fast Global Sharing of Medical Data?

Why is it so hard to access medical data for science? Almost without exception, people with cancer are very open and eager to help. They are surprised about this problem, too – they assume that the data they give to medical centers are somehow broadly shared and accessible to the global research community.

In one study I was involved in, it took several years to work through the legal paperwork to access stored medical images, and even then, the images were subject to myriad constraints. If people can go to the moon, and 2.08 billion people on earth are active smartphone users, why are medical data frequently still stuck in, figuratively speaking, local libraries with only a limited selection of books?

The strange thing of course is that, fundamentally, medical data belong to the patient, and therefore, if a patient wants to share his or her information, they should find it easy to do so. The most telling conversation for me was a father with two kids. When asked about data sharing, he said said he could not care less about who saw his medical records; rather, it was much more important to him that as many scientists as possible had access to his data, so that his data would make the largest difference and hopefully reduce the chance of his kids having brain cancer, like he did, at some point in their lives. That made a lot of sense to me.

I still do not fully understand all the barriers to efficient data sharing in cancer biology, but I’m curious about standard web technologies that can help patients share what they wantwhen they want, and to whom they want. If a patient can share a movie, a picture, or a book within several seconds around the world, why is it sometimes still difficult for them to share their medical information?

For a while I thought the major problems had to do with the rules and regulations surrounding medical data, but that turns out not to be the case. The simplest way to start thinking about crowd-sharing of medical information is that millions of people around the world already crowd-share medical information. For example, women with breast cancer sometimes wear pink t-shirts to raise awareness, and they then circulate these pictures on social networks. That’s an example of someone sharing medical information – namely, their cancer diagnosis – in the form of a picture.

A few months ago, I started to look into web technologies that could potentially be used to help people share some of their medically-relevant information within 1 second. I chose the 1 second standard arbitrarily – it seemed like a reasonable number. Much below one second you run into various technical problems, but if you are willing to wait a few hundred milliseconds, the technologies are all already there: inexpensive, massively scalable, and globally deployed.

What if each cancer patient on earth had the ability to broadcast key pieces of information about their cancers around the world, in one second? 

If you are curious, here is the White House fact sheet announcing CancerBase, and here is a little bit more information about how we started out. The actual site is at It’s an experiment run by volunteers, many of whom are cancer patients, so bear with us, and if you can, help out!